翻訳と辞書 |
Margin classifier : ウィキペディア英語版 | Margin classifier In machine learning, a margin classifier is a classifier which is able to give an associated distance from the decision boundary for each example. For instance, if a linear classifier (e.g. perceptron or linear discriminant analysis) is used, the distance (typically euclidean distance, though others may be used) of an example from the separating hyperplane is the margin of that example. The notion of margin is important in several machine learning classification algorithms, as it can be used to bound the generalization error of the classifier. These bounds are frequently shown using the VC dimension. Of particular prominence is the generalization error bound on boosting algorithms and support vector machines. ==Support vector machine definition of margin== See support vector machines and maximum-margin hyperplane for details.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Margin classifier」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|